手机版 欢迎访问人人都是自媒体网站
相控阵雷达是战斗机、战舰、导弹雷达等尖端军火的宠儿。它是一个密布着天线单元,没有机械结构,不可转向的平板,形态和传统雷达大相径庭,却拥有传统雷达难以比肩的优异性能。而其中运用的相控阵技术,已经在悄无声息间潜入了我们的生活。
撰文| 王昱
审校| 吴非
小编对于雷达最初的印象,来自于《红色警戒2》里苏联的那个雷达。
就是这个家伙 图片来源:《红色警戒2》盟军战役第一关我们印象中的雷达总有一个曲面在不停转动,以此向各个方向发射电磁波,并接收汇聚返回的电磁波,通过时间差判断目标的方位和距离。只有机械结构的转动才能让雷达接收到不同方向的信号。但是,现代武器装备中的很多雷达已经不再是这个样子了——它们变成了一块块平板,机械结构消失不见了。
红旗12导弹配备的H-200相控阵雷达车 图片来源:Wikipedia这种名为相控阵雷达的平板,能避免机械结构带来的磨损,提高系统可靠性,无疑是一大进步。但是,既然这个平板一样的雷达不能转动,它是怎么像以前的雷达一样,探测各个方向的电磁波呢?
相位舞者
答案是波的干涉。就像高中物理课本中说的那样,当两个波源发出同频率的波时,波的空间振幅分布会出现特定的变化。而相控阵增加了波源的数量,可以实现更精细的控制。按照惠更斯原理,波前上每一个点都能看作波源。而相控阵则是反过来,用计算机控制各个单元发射电磁波的相位,将它们重新组合成一束波。这样,就能控制电磁波的方向。
图片来源:Wikipedia在相控阵雷达工作过程中,无需机械结构,只需要调整各个天线单元发出电磁波的相位,就能改变发射电磁波的方向,实现多个方向的扫描。同时,因为没有机械结构存在,方向的变换可以非常快。甚至于给电磁波赋予特殊的形状,能同时照射多个目标。而将这个过程反过来,对收集到的电磁波信号进行分析,就能知道信号来源的方向。
相控阵的扫描 图片来源:Wikipedia利用多个单元的干涉来获取目标性质,其实在射电天文学中也有广泛的应用。望远镜的角分辨率与其口径有关,而干涉可以放大望远镜的等效口径。黑洞照片的拍摄就利用了这种技术,天文学家让全球各地的射电望远镜同时对M87中心黑洞进行拍摄,将收集到的信号组合起来后期处理,这个射电望远镜阵列的等效口径甚至可以达到地球直径级别。正是这种长基线干涉的技术,能让人类能拍出黑洞照片。
图片来源:EHT Collaboration当然,这种大规模的阵列使用起来具有诸多限制,相比之下,集成一体的相控阵要灵活得多。相控阵技术让雷达探测得更远、更快、更准。不过为了达到军用目的,相控阵雷达必须以高功率发射和接收电磁波。如果削减相控阵雷达的各项指标、降低成本,相控阵技术也能以较为合理的价格进入我们的生活。实际上,这种昔日用于尖端军火的先进科技,已经在悄无声息间潜入了我们的生活。
润物细无声
说到天线,我们熟悉的形象应该是长长的一根线,或者是几根垂直金属线组成的架子。现在我们用手机看视频时,对信息传输速率的要求日渐增高。如果你观察过4G、5G基站,你会发现它们上面的天线早已不是印象中的样子了。现在基站上的天线,多是一个长条形的方盒子,好几个一起挂在高处,每个方盒子朝向不同的方向,这样的天线正是采用了相控阵技术。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP