手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 科学 >

数秒实现材料微结构拓扑变换!两位中国青年学者详解“魔法”

时间:2021-04-19 09:28|来源:网络整理|编辑:|点击:

 
 
数秒实现材料微结构拓扑变换!两位中国青年学者详解“魔法”  
 

滴入一滴液体,材料的微结构从三角形网格变成了六边形网格,这一拓扑结构变换的过程仅需要10秒钟。

“我们工作的一个重要的亮点就是实用性,它具有制造简单、变换速度快、变换稳定、高度可重复、抗疲劳性强等特点,这些都是工业应用里很重要的条件。”本科毕业于浙江大学、现为哈佛John A.Paulson工程与应用科学学院博士生邓博磊在接受澎湃新闻()记者采访如是总结其最新成果。

北京时间4月14日23时,顶级学术期刊《自然》(Nature)在线发表了哈佛大学团队的一项研究,题为“Liquid-induced topological transformations of cellular microstructures”。邓博磊和李姝聪二人为该项研究的共同第一作者,李姝聪本科毕业于清华大学,现为哈佛大学化学与生物学系博士生;该论文通讯作者系顶级材料学家Joanna Aizenberg教授。

寻找一种有效的方法改变材料的微观结构,从而改变材料属性,这是李姝聪和邓博磊这项工作中的追求。论文中写道,微结构的基本拓扑结构可以深刻地影响它们的声、电、化学、机械和光学特性,以及热、流体和粒子的传输。

“微结构其实是个非常有意思的方向,因为在尺度上微结构的基元对于应用来说很小,但是它对于材料分子来说又很大。在新兴的超材料领域,研究者们可以只调控基元的几何形状就可以改变整个结构的某些属性,而不再需要去重新合成新的材料。”

然而,实现微结构的拓扑变换并非易事。此前有研究用液体溶胀、温度加热、电场等来实现微孔结构变形,“但是这些变形从来没有改变过结构的拓扑结构。”何为拓扑结构?邓博磊形象地介绍道,“节点的数量、孔洞的数量,或者一个节点连出去几条边,以六边形为例,它变形成另一个变形的六边形时,每个节点还是三条边连出来,总的孔洞数也是一样的,节点数也是一样的,这就意味着没有改变拓扑结构。”

在这项研究中,研究团队选取一种高分子材料为实验对象,仅采用两种液体,即实现了微观结构拓扑结构的可逆转换。值得一提的是,他们设计的这一结构转换主要的机理还具有很强的普适性,“我们提出的这种拓扑变形方法并不局限于某种特定的高分子材料或溶液,而适用于多种普适的高分子-溶液组合。”李姝聪补充道。

李姝聪对澎湃新闻记者介绍道,“我们用的制造方法是微结构翻模,已经是一种非常成熟的制造方法,在工业界已经有了广泛应用,制造用到的材料也是比较常见的材料,所以大规模制造并没有太多技术上的问题。”

他们在这项研究中展示了他们的微结构拓扑结构转换的方法可以有一系列的应用。“对材料表面力学、润湿性、声学带隙的调控,对颗粒、气泡的抓取和释放,以及信息的加密存储和读取。”

“我们当然可以设想将这种微结构铺设在飞机或精密机械的表面,从而可控动态地改变他们的表面性能;又比如通过对颗粒和气泡抓取和释放实现非常精细的化学反应控制,例如应用于微型化学反应器等等。”但邓博磊同时强调,“我们的研究还处于基础科研阶段,现在推测它的工业或生活应用可能还有些天马行空。”

他们期待,这项工作可以被更多的工业研发人员看到,从而催生出真正有用的工业级应用。

南方科技大学材料科学与工程系于严淏教授对澎湃新闻()记者表示,材料功能变革的重要突破窗口之一是实现微结构,尤其是拓扑微结构的动态可调,但体系的高复杂度导致拓扑微结构调控十分困难,是新材料研发的重要挑战。

他评价此项研究称,“该工作巧妙设计了溶剂溶胀和挥发在分子和微结构两个尺度上产生的耦合热力学和动力学过程,首次实现了系统可逆的拓扑微结构变换。难能可贵的是该方法可应用到多种材料和微结构中,为实现材料系统力、热、光、电、声等多方面功能突破提供了全新的普适性方法。”

犹他大学波动力学超材料实验室主任王派教授也对澎湃新闻()记者表示,“网格结构材料在现代工程中应用非常广泛, 从几十米几百米级别的桥梁建筑,到微米纳米级别的芯片器件,无所不在。近年来为了实现网格结构的可变可控, 全世界的各顶尖科研院所都尝试了各种方法,也只能达到局部几何形状的微调渐变。”

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP