手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 体验 >

如何做好用户生命周期分析?

时间:2020-11-04 11:07|来源:网络整理|编辑:采集侠|点击:

编辑导读:对于产品经理们来说,我们需要了解产品各个时期的用户特点,从而保证在整套流程中,我们都能辅助相应部门,在不同阶段制定出适合的策略激发更多新用户的加入,提升客户的转化和留存。所以做好用户生命周期的分析是非常重要的。本文作者就此分享了他的几点经验,供大家一起参考学习。

 如何做好用户生命周期分析?

在做数据分析的时候,用户生命周期分析,是个很典型的“理论一听就懂,数据一做就废”的东西。很多同学很困扰:“到底生命周期该怎么算?为啥我算的套到业务上不成立!”今天我们系统解答一下。

一、书本上的生命周期

在各路书本、文章中,大家都看到过这张图

 如何做好用户生命周期分析?

要注意的是,这个图讲的是理论上的用户生命周期。它假设了用户留存与用户价值之间存在倒U型关系

因此推导出:

用户必须得维护好

要搭建成长路径

要计算全生命周期价值

不要只计较眼前利益

前期重体验,后期分等级

等等理论结果。但这个假设前提,在具体的业务场景中很可能不成立,特别是数据上不会呈现完美曲线。因此会搞得很多做具体业务分析的同学很郁闷。

二、差异1:活跃与付费分离

对线下实体店而言,用户到店即付费,先消费后体验服务。但在互联网产品里,付费与活跃脱节的现象很常见。或者有的产品干脆允许用户只活跃,不付费,通过额外的权益和道具收费。比如游戏、在线音乐、视频、社区等等皆是如此。

总之,当用户活跃与付费脱节的时候,用户生命周期曲线变会发生变化:用户价值不再随留存时间变化,而是独立开,呈现出类似矩阵模型的样式(如下图)

 如何做好用户生命周期分析?

这时候要特别注意各类型用户比例,特别是白嫖用户的比例。在各类型互联网产品里,白嫖用户都有相当比例。如果不加区分,一概而论,则会造成一种虚假繁荣的假象。最终结果会导致产品叫好不叫座,商业化过程极其艰难。

三、差异2:场景化消费

即使是消费与活跃行为紧密捆绑,也会出现问题。最常见的就是场景化消费,比如:

出行:

今天下好大的雨,打个滴滴

今天下雨,但是是小雨,跑去地铁站

今天天晴,当然坐地铁拉

这就是典型的外因驱动。

电商:

今天有大促销,看看买点啥

今天有新产品上市,看看哪家便宜

女友快过生日了,看看送点啥

这是典型的内因驱动。

注意,无论是内因还是外因,在现实生活中都是很正常,很合情合理的场景。可这些场景会共同导致一个结果:用户留存时间与用户价值不是倒U型,而是随机的,甚至难以捉摸规律(如下图)。

 如何做好用户生命周期分析?

这导致用户生命周期曲线很难绘制,用户留存久了也不代表有价值,用户生命周期价值也难以估算。特别是大促销、爆款上市这种场景。最后用户还是看哪家便宜买哪个,跟之前的留存时间一点关系都没有。

这时候强行绘制用户生命周期,用平均值代替每个用户的真实情况。结果就是模糊了运营、营销、商品的作用,会造成一种虚假繁荣的假象。让大家以为:只要用户呆的久就早晚给钱了。结果发现用户生命周期价值的平均值越来越低。

四、差异3:浅尝辄止的新人

拉新,是所有互联网业务的核心,也是经常出幺蛾子的地方,拉来的新人完全不消费,或者过了很久才诈尸来消费一笔,都是很常见的事。这种浅尝辄止的新人比例一高起来,就会导致对拉新行动评估不准

如果用平均值的话,会把这些实际上是0的人平均掉,又是在制造虚假繁荣。如果剔除出去,只统计有消费的人,显然又会高估渠道价值。并且,由于诈尸用户存在,导致周期长度难以统计(如下图)。

 如何做好用户生命周期分析?

这种统计难,常常被业务部门拿来当甩锅借口。特别是当浅尝新人+场景化消费同时出现的时候,负责拉新的市场部、增长团队、营销部就喜欢扯:“得评估用户生命周期价值,不能只看眼前”“虽然用户现在没消费,但是300年内说不定就消费一大笔呀,所以不能说我做的差,是你统计的不准。”

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP