手机版 欢迎访问人人都是自媒体网站
编辑导语:数据可视化,是数据科学家工作的重要组成部分。在项目的早期阶段,科学家通常会进行探索性数据分析,以获取对数据的一些洞察;在项目结束时,能以清晰、简洁和引人注目的方式展示最终结果也非常重要,这样才能让你的非技术性客户能够理解你的意图。
想象一本没有图像的科学教科书,没有图表、图表、带有箭头和标签的插图或图表,科学将很难理解。
那是因为人类天生就是视觉生物,人们以图形形式吸收信息,而这些信息会以文字形式逃避。图像对于各种叙事都是有效的,尤其是在故事复杂的情况下(如科学常常如此)。
科学的视觉效果对于分析数据,传达实验结果甚至做出令人惊讶的发现至关重要。
麻省理工学院广泛研究所的创意总监Bang Wong说:可视化可以揭示很难或不可能以其他任何方式找到的数据模式,趋势和联系。“绘制数据可以使我们看到数据的基础结构,而如果要查看表,则无法看到这些结构。”
但是,很少有科学家会像在生成数据或撰写数据时一样,对视觉效果给予同等的关注。
数据可视化科学家SeánO’Donoghue说:大多数科学出版物附带的图表往往是研究人员要做的最后一件事,“可视化实际上只是锦上添花。”
结果,科学中充斥着不良的数据可视化效果,使读者感到困惑,甚至可能误导制造它们的科学家。
数据视觉效果不足会降低质量,并阻碍科学研究的进展。随着越来越多的科学图像进入新闻和社交媒体(从气候变化到疾病暴发的一切图示),不良视觉效果有可能损害公众对科学的理解。
随着科学数据的数量和复杂性日益增加,这个问题变得更加严重。这些数据的可视化,理解和共享它们比以往任何时候都更加重要。
然而,科学家很少接受可视化培训。新南威尔士大学的奥多诺休(O’Donoghue)是《2018年生物医学数据年度回顾》中有关生物医学数据可视化的论文的主要作者,他说:“社区尚未普遍意识到这确实是必要的。”
但是有进步的迹象,在过去的十年中,至少召开了两次致力于科学数据可视化的年度会议。
《自然方法》(Nature Methods)杂志在2010年至2016年定期刊登有关创建更好的图形和图表的专栏文章 ,然后将其改编为科学家向该杂志提交论文的指南。但是到目前为止,很少有科学家关注这个问题。
改善科学可视化将需要更好地了解人脑如何看待世界的优点,缺点和偏见。
幸运的是,研究已经开始揭示人们如何阅读和错误阅读各种可视化图像,以及哪种类型的图表最有效,最容易破译,应用这些知识应该可以更好地进行科学的视觉交流。
犹他大学的计算机科学家Miriah Meyer说:“我们对有效的方法有很多实用的知识。”、 “有许多原则经过时间的考验,并一遍又一遍地证明是有效的。”
一、图表选择人类视觉系统的发展是为了帮助我们在自然世界中生存和发展,而不是阅读图表。
我们的大脑以可以帮助我们在有毒品种中找到可食用植物,发现猎物并且在白天和黑夜中都能很好地看到自己的眼睛的方式来解释。通过分析我们从眼睛获得的信息来实现这些目的,我们的大脑使我们对世界有了量身定制的感知。
在1980年代初期,贝尔实验室的统计学家威廉·克利夫兰(William Cleveland)和罗伯特·麦吉尔(Robert McGill),开始研究人类感知的细节如何影响我们解密数据图形显示的能力,从而发现哪种图表发挥了我们的优势,以及我们在与之抗争。
克利夫兰(Cleveland)和麦吉尔(McGill)在1984年发表在《美国统计协会杂志》(Journal of the American Statistics Association)上的开创性论文中,根据人们阅读内容的便捷程度,对视觉元素进行了排名。
人们在辨别某些类型的视觉效果上比其他特征更胜一筹,例如,两条线的长度或一条线的方向比灰色阴影或颜色的强度更容易分辨。研究表明,使用此列表顶部视觉元素的图形比靠近底部的图形更易于阅读且更有效。
他们的实验表明,人们最擅长基于条形或折线的长度来阅读图表,例如在标准条形图中。当重要的是要准确识别值之间的细微差别时,这些可视化是最佳选择。
研究参与者发现很难判断方向,角度和面积的差异。使用体积,曲率或阴影来表示数据的图形更加困难,最不有效的方法是色彩饱和度。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP