手机版 欢迎访问人人都是自媒体网站
文章梳理总结了最常见的扭曲数据的九大手段,大家先牢记于心。很有可能你会在年终总结、年度规划、活动评估等场合遇到它们。提前了解,也好早早应对。
做数据分析,有数据才能分析。
如果数据是不真实的呢?
如果数据是人为扭曲的呢?
如果数据被人为扭曲,还要求你接受呢?
今天我们就来讨论这个话题。趁着还没过春节,我们把这些糟心事一次说干净,大家收拾收拾心情辞旧迎新。
段位一:虚报数据业务方故意虚报、谎报、不报数据,导致基础数据缺失,错误频发。这种情况在用纸质单张的年代很常见。不过随着数据系统的普及,此问题已经越来越少。
如果现在还有使用纸质单张的场景,比如用户纸质申请表、调查问卷等,此问题依然会存在。解决方案也很简单:上微信卡包呀!啥年代了注册个会员还写纸质单。
段位二:人为改数参见:
系统是死的,可人是活的。想解决,只能加强考核,对违规操作的人严惩不贷。这些操作的规律性很强,且和具体人的行为高度绑定,通过分析是可以识别的。
段位三:修改口径数据不好看了,怎么办?直接改统计口径!本质上讲,数据指标是为了计算方便而设的,作为使用方业务方想咋改就咋改。但是因为改动口径,导致前后数据不一致,就是大问题。只改统计口径、不改指标名字,更是鱼目混珠的大问题。所以改口径可以,把过往数据报告,按新口径一口气刷了才成。
段位四:控制节奏参考:
注意,和段位2不同,段位2是伪造数据欺骗公司,性质恶劣。段位4本质上没有伪造数据,而是利用了销售、运营、奖励的规则,谋取个人利益最大化而已。
实际上,是个人都会这么干,这属于业务潜规则。我们常说“水至清则无鱼”,你不可能要求一个人不为自己着想。如果真的管的太死,一线业务绝对会跳槽跑路。
作为数据分析,更多的需要有能力识别这些具体问题,把它们控制在可接受的范围内。如果问题太过泛滥,再看如何推动制度层面优化调整(如下图所示)
注意,从这个问题开始,我们进入中级难度,因为后边的问题,对数据分析师个人的分析能力要求会越来越高。就比如区分哪些是合理潜规则,哪些是恶意改数,是需要一定分析经验积累的。
段位五:乱带节奏做数据分析时你一定经常听这种问题:
“最近活跃率下降了?分析下原因”
“最近销售表现不如人意,?分析下原因”
“为什么我们的产品那么差?”
然而你辛辛苦苦扒了一堆数据,发现:没啥毛病啊?恭喜,你中了乱带节奏的全套。业务口中的“下降”“不好”“不满意”很有可能是个伪命题!
注意,业务方在不经意间扭曲数据判断,很多数据分析新人会直接一脚踩进去。很多新人做分析,不是先问是不是,而是直接研究为什么。按用户群、注册时间、产品类型等把数据拆的七零八落,最后屁都解读不出来。过两天回来一看,人家问题已经不存在了。
应对此类问题,切记:
遇到“大小、多少、高低、快慢、好坏”先问标准。
听到具体问题,先问怎么知道这个问题的。
听到人议论数据,先问原始数据源。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP