手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 职场 >

什么样的同学适合做数据分析?

时间:2021-04-22 09:28|来源:网络整理|编辑:|点击:

编辑导读:毕业季即将来临,又有一大波新鲜血液准备进入求职市场。不少同学对数据分析这个工作颇感兴趣,觉得很高大上,并且工作会有成就感。别急,首先要思考的一个问题是,你究竟适不适合做数据分析?本文作者对这个问题进行了解答,与你分享。

 什么样的同学适合做数据分析?

马上又要到毕业季了,大四的同学已经开始在考虑如何拿到一份数据分析的offer。还有一些低年级大一大二的同学,在思考自己是否要往数据分析发展?对于这部分同学来说,技能项目等等这些知识。学习并不是特别着急的。

首先要思考的一个问题是,你究竟适不适合做数据分析?

一、适合数据分析的几点特征

先来说说适合做数据分析的人都有哪些特点。

1. 善于学习

数据分析岗需要的技能实在是太多太杂了。这比其他岗位的要求多得多。业务同学,需要了解业务知识以及一些工具技能。技术同学要掌握技术原理和工程实现。而数据分析同学不仅要懂业务,还要懂技术,甚至还要懂沟通、懂商业、懂营销。如果你只掌握基本的数据处理技能。当然也可以做数据分析。但是这种数据分析被淘汰的风险非常大。要想做好数据分析,就必须持续不断的学习。没有强大的学习能力。你是很难做好数据分析岗的。

可以说,你的学习能力决定了你数据分析的天花板。

2. 延迟满足

数据分析的学习之路是非常曲折的。

对于业务的同学来说,投放两个不同的广告。他们的转化效率,阅读量等等,这些数据是马上可以得到的。很快的对比出不同方案,他们之间的优劣。

对于技术的同学来说,他们的学习依然是可以及时反馈的。学习到一种新的算法,马上可以通过代码进行尝试。

但是对于数据分析来说,他们的学习就很难得到及时反馈。因为数据分析更多的是结合整个企业的经营状况。为高层提供战略决策的支持。而战略的落地是一个长期的过程,也很难设置对照组。比如,你通过商业分析最后得出结论,目前的业务瓶颈不是供给,而是需求,所以要加大营销的力度。之后你很难验证这个决策究竟是对还是不对?可能之后的整体业绩真的变好了,但是这究竟是你的策略奏效了,还是原本大趋势就是如此?如果这个决策本身是错误的,但结果看起来还可以,那你之后可能会继续重复这样的错误,在经历过几次错误之后,你才会认识到”原来之前那次是运气好”。所以为什么有经验的数据分析师的薪资那么高?因为之前的公司已经给他们付出了足够多的试错成本,犯错的几率更低。

要成长为一个具有优秀商业理解能力的数据分析师,需要几年甚至十几年的努力才可以达到。这就要求你有延迟满足的能力:不要想着我今天学的东西,马上就能让自己成为非常厉害的人,这是不现实的。

3. 执行力强

做数据分析工作。百分之十左右的时间是构建分析思路,百分之七八十的时间是处理数据。还有百分之二三十的时间是汇总结论和汇报。

由于一个问题的解决方法绝对不是唯一的,一定可以从不同的角度解决同一个问题。而且不同的解决方案之间的成本差异往往又是巨大的。所以很多人喜欢在最初的构建思路上面,花费很多时间。美其名曰“要找到一个更好的解决方案”。但实际上,这种情况很可能是拖延症。他们只是不愿意面对那长时间的枯燥的数据处理,他们更喜欢在思考解决方案的时候享受智力上的优越感。

而商业问题变化很快,我们往往不需要找到真正的最优解。只要当下能够解决问题,并且付出的成本是在可接受范围之内,就是一个好的方案。

所以优秀的数据分析呢会先构思一个看起来比较可行的分析思路,然后赶紧开始做后续的工作。这就需要比较强的执行力。

4. 刨根问底

中国的应试教育培养出了很多服从权威的同学。你告诉他一个观点,并告诉他就按照这个做,这类同学不会怀疑这个观点的正确性,会全盘接受。

不过会有一小部分同学,他们很喜欢刨根问底,喜欢思考为什么?不管是老师告诉他的,还是课本上写的,他都会去想为什么是这样。

在生活中,这些同学在看到身边的一些现象时候,也会去思考为什么是现在这个样子?比如他们会思考为什么社区团购突然就火了?为什么《你好李焕英》会火?等等。

数据分析的工作很多就是找出“为什么”,如果你喜欢刨根问底,那么你是比较适合做数据分析的。

5. 逻辑能力强

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP