手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 体验 >

数据分析师的绩效是什么?该如何考核?

时间:2020-12-30 09:29|来源:网络整理|编辑:采集侠|点击:

因为数据分析并不是业务流程中的刚性环节,它也不能对业务流程产生直接影响,所以数据分析师的绩效考核成绩很难评估。那么,数据分析师就不需要绩效考核了吗?如果要考核,关键点是什么呢?该如何考核?

 数据分析师的绩效是什么?该如何考核?

数据分析师的工作绩效到底该怎么定?这个又是一个很蛋疼的话题,甚至很多从业很久的老鸟都没想明白,也很容易中坑。

所有部门里,数据分析的绩效可能是最蛋疼的。其他部门的职责和绩效都非常清晰。比如传统企业,很有可能部门架构与职责是这样的:

销售→搞钱→业绩、毛利、费效比

品牌→造势→知名度、满意度、美誉度

促销→助攻→剔除自然增长后的增量

营运→苦力→工单处理量、及时性、满意度

研发→创新→新产品数量、销量

供应→供货→产量、质量、配送及时性

各个部门之所以清晰,是因为在企业创造效益的链条上,大家各司其职:

 数据分析师的绩效是什么?该如何考核?

咦?数据分析在哪里?

是滴,尴尬的地方就在这里。每个部门都需要数据,但不是所有部门都需要“数据分析”,甚至压根是只要数据,分析不分析无所谓。

比如在B2B类企业,销售们把客户真实信息、销售过程藏的严严实实,总部经常睁眼瞎,分析个啥。比如在B2C类企业,一线销售、营运需要的可能一张表搞掂。后台供应、研发可以自己从erp里拿数,为啥需要一个数据分析师坐在这里专门取数?

所以我们看到传统企业中,只有在大型的,分公司多的,业务类型复杂的(同时有线上线下,2B2C的),对数据敏感的银行、航空、三大运营商,才能有个专职的数据部门。

可悲的是,在传统企业里,做数据分析的经常连名份都没有。连部门名字,都叫什么业支(业务支持),信息中心,决策支持,监控,调研分析……连完整的“数据分析”四个字都没有,这混的是个什么劲。

互联网企业的环境相对好一些,因为大部分互联网企业不挣钱,挣钱的互联网企业也不指望那点毛利过日子,而是做的B2VC的生意。

因此传统企业特别看重的销售额、毛利、利润率,在互联网这里并不是命根子。于是有了AARRR。除了利润率,客户数量、活跃、留存、新客户数等指标一并被看重。需要数据的地方多了,数据分析部门地位也提高了,也带起了一波重视数据分析的风气。

然而,这并不意味着数据分析岗位的地位更舒服,因为和传统企业一样,互联网公司的服务流程中,推广(拉新)、产品(承接)、运营(维护)各做一块,形成闭环。

 数据分析师的绩效是什么?该如何考核?

数据分析并不是业务流程中的刚需部门,比之传统企业,互联网巨大的数据量与运算速度的要求,养肥的是后台做数仓的数据工程师与架构师们。数据变得更加刚需,分析人人能做的场面却并没有改观。

恰恰相反,传统企业的业务部门都不咋懂技术,还指望着一个分析师来取数。互联网公司懂sql的多了去了。经常听到运营在吼:整个大宽表给我!我自己跑!你们跑数太慢了!……行业寒冬,裁人先裁做分析的,这破事到处都是。

为啥要啰嗦这么大一堆,讲企业的业务流程与数据、数据分析的关系。是因为很多做数据分析的没想明白的关键就在这里:数据分析的绩效难量化,难体现,本质是因为它不是业务流程中的刚性环节,它也不能对业务流程产生直接影响。数据分析作为一个技能非常重要,但作为一个独立的部门,很容易夹在业务部门间不上不下,难以做人。

所以很多做数据分析的人,甚至是部门领导,会把绩效定成:完成报表XX份,处理数据需求XX单,建立模型XX个,这是很不完善的做法。准确来说,这种是数据分析部门内控的绩效指标。考核还不会跑数的小弟小妹们,可以这么干,大家多跑快跑,快快成长。

可对稍微有点资历的分析师来说,这些都不是该耗精力的地方(虽然可能是最耗体力的地方,哈哈)想给自己创造真正的绩效,就得想办法参与到业务流程中,为自己争取到一席之地。

于是,有些做数据分析的又钻进了第二个大坑:我要做业务!我要为企业增收!我要为企业减支!

听起来似乎很合理,因为我们经常做效益分析,经常做投入产出比分析,看起来和增收减支只差一步之遥吗。

大错特错!

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP