手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 体验 >

5个步骤,教你做出优秀的数据分析项目

时间:2021-01-20 09:23|来源:网络整理|编辑:采集侠|点击:

优秀的数据分析项目不是一大堆数据的堆砌,而是要有具体的产出。这需要数据分析师搞清楚为谁服务、找到合适的时机、在开工之前确认好项目需求再开始分析工作,并在最后结合项目目标做好个性化汇报。

 5个步骤,教你做出优秀的数据分析项目

上一篇我们普及了数据分析项目是什么。今天我们系统讲解一下:如何做一个优秀的数据分析项目。

首先大家要明白,并不是所有的项目,都需要找一个万人大会堂,拉着横幅,董事长总经理轮流上台鸣锣开道的。只要满足“在特定时间、特定条件下有具体产出的”都是项目。

因此,做项目的关键,不是图个名号,而是有具体的产出。有了具体产品的产出,KPI/OKR文档好交差;领导对你满意度提升;升职考评的时候有更多资本;跳槽也有更多可以写简历的东西。这才是我们要争取的。而所谓“优秀”的项目,指的是比“我跑个数据”更有说服力的产出。

那么,第一步该从哪里开始呢?

第一步,认识服务对象

做项目,最重要的当然是搞清楚目标;搞清楚目标,第一步当然是搞清楚为谁服务。这是数据分析新手与老鸟之间的最大差异。往往没入行的小白,满脑子都是“模板、模型、公式”。以为只要对着模板copy一份就算是完成工作了。刚入行的菜鸟们喜欢笼统的说:业务。可业务并不是一个孤零零的、独立的个人。业务两个字背后,是非常具体的、复杂的含义(如下图所示)。

 5个步骤,教你做出优秀的数据分析项目

具体问题具体分析,是数据分析的最基础要求,也是做好项目的第一步。因为这五大要素和它们的具体形态,决定了我们的数据分析可以做到什么程度,应该做成什么样子,做成什么样才能满足需求。具体的关系,如下图所示:

 5个步骤,教你做出优秀的数据分析项目

理清具体问题非常重要。过去我们常说传统企业如何如何,互联网企业如何如何,在渠道融合发展的今天,实际上二者之间边界越来越模糊。如果不具体分析,往往会闹出很多笑话。

比如:

曾是toC互联网企业,现在要发力toB,完全不知道怎么和客户打交道;

名为互联网产品,可服务对象是实体老板,销售还在用最原始的电话外呼;

名为互联网行业,可运作的仍是实体产品,进销存量收利一样都不差;

名为新零售,可数据采集一塌糊涂,连传统连锁店都比不上;

名为传统企业,可在做数字化转型,玩的是分销、裂变;

以上种种复杂场景,不是大喊一句“我是互联网AARRR思维”就能搞掂的。指望套模板结局就是死翘翘。况且经过这几年的历练,很多运营、产品经理、策划都学会了基础数据分析概念,这时候还抱着充满“SOWT、PEST、5w2h”一类空洞口号ppt模板,数据分析师就等着下岗吧。具体问题、具体分析,怎么强调都不为过。

并且,了解清楚状况,对于下一步把握战机非常重要。如果凡事都等着业务找上门来才干,那就跟叼飞盘的汪汪没啥区别了(业务提一个假设,数据验证一个假设,宛如一只叼飞盘的汪汪)。自己对形势有判断,才好主动发现机会

第二步,找到发力时机

数据分析项目,最大的敌人是:日常工作。所以,并不是所有事情都适合立项目来做。时机非常重要

往往我们要挑业务部门的以下时机入手:

想做创新

想改良现状

新工作两眼一抹黑

遭遇问题不知所措

三板斧砍完不见效

在这些战机时刻,抛出系统的解决方案,一鼓作气独立把问题解决掉(如下图所示):

 5个步骤,教你做出优秀的数据分析项目

第三步,确认项目需求

找好发力时机以后,与具体业务方谈妥,准备动身开工。在开工前一定要确认好项目需求,具体来说就是项目铁三角:

 5个步骤,教你做出优秀的数据分析项目

这里有三点要注意:

数字、模型、报告本身不是产出。业务从不了解情况到了解,从没有办法到有办法,从不知道怎么选到知道怎么选,从没有准备到一二三级预案,这才是产出。所以不要脱离问题就数论数。从数字里推出结论。

时间千万别忘了。时间紧,尽量快速出结论;时间宽,就要分步骤输出,企业不是学校留大半年给你慢慢憋论文。

有多大锅下多少米。如果数据质量差、人手不足、缺乏分析经验,就沉住气一步步做,不指望一次解决所有问题。

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP