手机版 欢迎访问人人都是自媒体网站
作者对数据指标体系进行了系统的梳理,总结了数据指标体系的5个要素,构建体系的5个步骤和常见的5个问题,与大家分享。希望文章能让你对数据指标有更深入的了解。
大家好,2020年开年就是一波疫情,就业和经济形势都很严峻。为了提升同学们的职场竞争力,为灾后重建做点贡献,陈老师特别推出一个系列教学。从数据分析的基础方法到具体问题处理,系统讲解一下。
第一期,当然得从数据指标体系讲起。因为几乎所有数据分析工作都会提“建立数据指标体系”。同学们现实的困惑是:你说报表我就见过,我天天都在更新。可这玩意怎么就体系了呢?做了体系又怎么样呢?为啥我不觉得我做的是体系?今天系统解答一下。要讲,就从数据指标讲起。
01 为啥需要数据指标以下话是不是经常听到:
“大概有1万多人吧”
“有很多顾客都不满意”
“感觉我们门店都没人了”
不确定、不具体、不准确。
我们平时过日子都是这么说话的。没毛病,因为具体的消息是有很大成本的,大部分时候我们就是随口说说而已。但是企业经营要是都靠这个那就死翘翘了,花多少钱赚多少钱都不清楚,老板非气的翘辫子。
数据指标就是对抗不确定的。
如果我们把上边的表述改成:
2月4日新注册用户9800人,超目标1000人
2月4日当日A产品退货100件,累计30天退货率2.5%
2月4日全国到店用户30万人,到店率30%,低于32%的期望值
是不是爽快多了。这就是数据指标的直观用途。
02 为啥需要数据指标体系实际工作中,想要准确说清楚一件事是挺麻烦的,比如我们想说:“2月份A产品卖的非常棒!”如果对方想较真的话,可以挑一堆刺出来(如下图)
一个问题,往往有很多方面,只用一个指标不能充分说明问题。这就需要一组有逻辑的数据指标来描述,这就是数据指标体系。
03 数据指标体系五大件 第一要素:主指标(一级指标)用来评价这个事到底咋样的最核心的指标。比如说:“产品卖的好”。直观的想到是“销售金额”这个指标,因为这是我们卖货直接收到手里的钱,钱多了当然好。
每个指标得有以下要素:
业务含义:在业务上它的意义是……
数据来源:哪个系统采集原始数据
统计时间:在XX时间内产生的该数据
计算公式:如果有比例、比率,得说清楚谁除谁;如果是汇总,得说清楚谁加谁。
注意:有可能需要多个主指标,来做综合评价。比如产品卖的好,光看金额还不够,可能还要关注毛利,这才是真正赚到的钱。可能还得看销售数量,因为销售数量和库存直接挂钩,得防止积压太多。这样就至少有了三个主指标:销售金额、销售件数、销售毛利。
第二要素:子指标(二级/三级指标)主指标可能由几个子部分构成。比如:
销售金额=用户数 * 付费率* 客单价
如果销售金额没达标,我们会很好奇:到底是购买的客户少了,还是卖的人不够多,还是买的太便宜了,了解细节有利于我们找到真正的问题,这时候就得拆解子指标。
主指标往往是最终的结果,比如B2B行业的销售金额,是销售线索-售前跟进-需求确认-产品体验-价格谈判-竞标-签约这一系列过程最后的一个结果。光看一个最后结果是无法监督、改进过程的。如果想更进一步管理,就得看得更细一些,从而添加子指标(如下图)
有可能一件事是很多人、在很长时间内完成的。想知道总销售金额是怎么构成的,每个地区、每个团队分别完成多少,可以增加分类维度。通过分类维度,把主指标切成若干块,这样能避免平均数陷阱,把整体和局部一起看清楚(如下图)
即使有了以上四个点,我们还是不能说:A产品卖的好。因为好是个形容词,是和差相对的。因此就需要一个对比的参照物。参照物的选择,本身是个复杂的分析过程,需要做深入的分析。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP