手机版 欢迎访问人人都是自媒体网站
在上一篇文章《数据可视化设计(2): 可视化设计原则》中,提出了八大设计原则指导数据可视化设计。这篇文章,我将与大家分享如何用设计思维的流程共创数据可视化设计。(PS:此文讨论的数据可视化设计主要以大屏为展示载体,不考虑其他特殊载体)
当今市面上的数据可视化工具和开源组件库应接不暇,以阿里DataV、腾讯云图、百度sugar为代表的数据可视化大屏工具,致力于一站式搭建专业水准的可视化大屏应用,并且可以满足不同业务需求,极大地提高了数据可视化设计与实现的效率。
不管是利用数据可视化工具一站式设计开发,还是传统的定制化开发流程(分析数据→交互&视觉设计师编码可视化→实现算法和交互→测试、上线),从需求研究、分析数据到数据可视化设计的整个流程与方法是可以固化的。
优秀的数据可视化设计是一个创新的过程,将共创为核心的设计思维作为基础,结合数据可视化设计实践,可固化一套相对科学的设计流程。
下图是市面上数据可视化服务供应商、组件库、大屏工具、BI工具的汇总。
在系列文章开篇《数据可视化设计(1) :情感化设计指导可视化设计理念》中笔者就曾写道:数据可视化的实质就是用数据讲故事。从利用数据讲故事的维度,结合设计思维固化形成一套可视化设计流程。此流程将数据可视化设计大致分为三大阶段:故事刻画阶段、可视化编码阶段、评估&优化阶段。
数据可视化与设计思维模型
三、可视化设计思维——流程1:Discover 发现发现阶段是收集的过程,紧密联系用户,收集真实的需求,收集需要可视化的数据,从用户与数据中发现问题。
用户是数据可视化的受众,对于大多数的数据可视化大屏(尤其是政企单位),设计受众往往分为各种角色的领导和一线工作人员。因此,如何满足各种利益相关者的需求,成为发现用户阶段需解决的关键问题。遵循以人为本的理念,与利益相关者相处大量的时间,通过观察、实地调研、用户访谈等方式,了解用户日常工作流程、工作场景涉及到的数据,捕获利益相关者的真实痛点和诉求,为构建可视化故事做准备。
2. 发现数据数据是可视化的对象,数据可视化并不是简单的数据图表的罗列,更是要发现数据所蕴含的规律、态势、问题、结论等。每个领域通常都有自己的词汇表来描述其数据和问题,不同的数据状况与数据组合的寓意不同,数据背后隐藏的问题也都不尽相同。
数据源本身也可能会存在问题,许多设计师跳过专业的分析手段,根据未经验证的数据或假设,立即进入可视编码阶段,可视化结果会产生偏差。发现数据的过程还可以验证数据是否可信,数据里是否存在业务概念性、逻辑性的问题。利用数据分析与数据挖掘的手段,分析数据,发现数据集的意义与数据背后隐藏的问题,验证之前的结论、假想,通过可视化的方式形象地展示。
3. 发现问题洞悉用户,可以发现一些用户关注的核心问题和解决问题的方式。通过数据处理、分析与挖掘,可以验证之前的假设,发现数据集隐藏的特征与问题。将有价值的问题收集起来,准备进入Define阶段。
四、可视化设计思维——流程2:Define 定义定义阶段侧重于找准问题,找准问题才能正确地构建可视化故事。根据发现用户阶段得到的用户关注的核心问题,结合发现数据阶段得到的数据背后隐藏的问题,选择合适的视角与视图,构建兼顾每个利益相关者的可视化故事脚本,阐述数据可视化故事。
发现用户阶段的问题往往是用户工作场景中的痛点产生的,发现数据阶段的问题往往是数据背后隐藏的问题。解决数据本身的问题会缓解用户痛点,数据分析中发现性或预测性的规律也会给解决用户问题提供方向。将发现阶段的问题收集起来,归纳分析,最终确定数据可视化需要反映或解决的核心问题。
2. 定义视角&视图Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP