手机版 欢迎访问人人都是自媒体网站
关键词:40多家公司、5个不同业态、信息化水平参差不齐、数据标准缺失、数据质量差。
公司背景:这个企业是一个以物流为核心产业的多业态集团,它的传统业务物流、仓储、机场、货运还有通关报关进出口贸易这五大业态,其中供应链是他们希望整合的业务。
业务目标:
半年内完成集团业务整合;
一年内打通多业态业务;
上线整合型产品。
数据原则:数据为先:利用户数集成整合业务,数据探索推动创新。
三步走:
数据资产梳理;
数据共享开放;
数据场景创新。
这是我在2017年成功实施的项目,这种案例并不常见的,因为很少有企业具备这样的魄力。
这40多家公司的企业信息化水平参差不齐,有的子公司已经有了比较好的信息化建设,核心的数据在数据仓库里面,有的子公司甚至还以excel和纸质文件为主。这种情况下的企业数据标准是缺失的,数据质量根本就谈不上了,所以他们希望通过用户、订单和支付这三个核心的数据整合,构建出新的产品业态,做到物流行业端到端的服务。
比如:把生鲜从澳洲空运到国内,从选货到本地的采购,澳洲本地的运输,跨境的电商,跨境贸易到国内,然后再从通关、报关、物流最后快递运输到消费者手上。
说起来它是比较清晰的,但做起来是非常复杂的。因为这些企业是不同的公司,他们的客户是完全独立的,所以如何在半年之内时间内完成集团业务的整合,这个是难度非常大的。
当时我们给他们做整体的数字化转型,我们深刻地意识到,如果用传统的IT规划或者转型方式去做,光是组织结构的变化,流程制度的梳理,就会非常的缓慢。
当时我在西安给这个企业做了两天数字化转型的培训,企业的高层、首席信息官,首席创新官全部来参加了,一起拉通了企业的愿景,制定了整个转型的方案,围绕数据用数据去集成整合业务,用数据从数据当中去探索,这么整合型后的新产品在哪里。
我们制定了三步走的策略,如果从流程层面来走的话,那么流程是围绕着这个岗位的,是围绕着你的业务的目标的,它是有一些线下的复杂因素在里面。但是数据本身它是非常客观的,而且它是有相互依赖的关系,所以数据是打通整合业务的很好的方法,那么如何去集成数据呢?
请大家注意这里的数据资产的梳理,它不仅仅是原系统的数据,我们认为企业二次加工过的数据集、数据应用、数据报表,都是数据资产。
梳理数据资产的第一件事情是构建数据资产目录。
它是一个抽象过的,同一个业务域的数据资产的一个目录一个结构。那么这个数据资产目录的一个节点,它可以挂接多个数据源,梳理数据资产目录的过程,我们不用去真实的去看数据,它实际上是一个物理业务在数据世界里的建模。
举例:这种企业的物流业务,它可能有多家公司都在做同样的业务,有多个地区的公司、多个不同的主干物流和支线物流,它是不同的数据集。
就是说去看这些企业、业态,他们现在都有什么数据?这些数据在哪里?这些数据质量如何?然后在这个基础之上,我们把构建了一个数据资产平台,然后把一些优质的数据(当时这个企业数据质量比较好的是物流和货运,有一定的基础数据)挂接到数据资产平台。
这种情况下,我们同时帮助客户企业构建了数据共享的数据门户,他们的业务人员可以在数据工具里面快速的发现找到定位浏览,快速的用他们熟悉的工具去探索数据。
我们把数据用户分为两类:
(1)业务用户
他们不具备使用数据仓库、数据报表这样的能力,他们只熟悉常用的拖拽式数据工具,他们不会使用复杂的工具,比如说有的可能只熟悉excel。
(2)具备高级数据分析的用户
这样的平台里面,他们跟数据资产直接挂钩,同时跟授权挂钩,他们是不是能够返使用这些数据?
授权所有的东西议题都会被记录。那么当他们探索这些数据发现了有价值的数据集,发现了有意义的数据创新的时候(这就是所讲的数据场景创新),它就可以快速的把这些数据及数据价值发布成服务,然后这些服务可以快速地提供给业务用户和业务系统去使用。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP