手机版 欢迎访问人人都是自媒体网站
无论你是产品人还是运营人,只要与业务相关、与产品相关,你就少不了和数据分析打交道。一套优良的数据分析方法能够高效解决很多问题,并在产品决策/产品运营遇到瓶颈时提供优秀的解决方案。
一套优良的数据分析方法可以让你有条不紊地解决各类问题,摆脱杂乱无章的假设和猜想。面对工作和生活中的一系列问题,你需要一套体系化的数据分析方法论帮助你去伪存真,无限缩短你与正确答案的距离。
一提起数据分析这个词,很多人都会犯难,说自己连Excel都用不好,更别提利用编程的方法去做更高级的数据分析了,其实这样的想法是有一些多虑的。数据分析方法已经不是数据分析师的专属了,更不是数据挖掘工程师独享的方法,几乎每一个与业务和产品相关的岗位都需要数据分析方法。
岗位不同,要求则不同。从招聘网站也能看到,像传统的数据分析岗位自然是会要求编程等技能的,但是一些以数据分析助力主要职责的岗位则不要求编程类技能,更多的是数据分析思维,和BI系统分析经验。
有的公司自建BI,有的公司使用第三方BI,鉴于系统保密的原则,本文案例的BI案例均来自友盟+移动统计(U-App AI版)DEMO,希望本文能带给大家数据分析方面的思悟。
一、为什么要拥有数据分析能力?今年互联网行业回归常态,各个岗位的招聘需求回落明显。
我爬了某招聘网站的数据发现,招聘名字带“数据分析”的岗位仍有8000多个,从实习生到高级管理岗位都有较多需求。也就是说,有一定数据分析能力的人在找工作时的优势十分明显,岗位薪资均值也高于其他职能类岗位。
所以,掌握数据分析能力可以加薪是必然的,这也是为什么要学数据分析的原因。
二、打破常规的数据分析思维如果大家看过相关数据课程或者文章,一定了解过各类分析方法,大学的数据分析课程也会介绍很多数据分析方法。你学了一遍又一遍,笔记记了一遍又一遍,但是在最后遇到问题时,仍然不知道该如何下手。
所以要打破常规的数据分析思维,在基础理论之上建立自己的数据分析思维。
从思维能力上看,我认为数据分析能力的提升要遵从这3个原则:
第一,要深度理解业务。不理解业务的分析结论不具有任何参考或者指导意义。所谓理解业务就是要学会拆解业务,用指标衡量业务的发展趋势。
第二,拆解业务后,要基于业务指标建立分析框架,并且基于当前业务状态和目标找到可衡量的关键性指标。
第三,用数据量化指标,把指标公式化,最佳的状态是每一个指标背后的数据都是最小维度且量化的。
例如以电商店铺的当日销售额为例:
销售额=店铺客单价*付费客户数=客单价*支付人数*支付成功率
支付人数=浏览人数*下单率
浏览人数=商品曝光次数*曝光转化率
所以理论上,在店铺客单价不变的情况下,可以通过提升各个步骤的转化率,以及商品曝光机会来最终提升店铺当日的销售额。
对应的策略可以是加大广告投放量,优化商品详情页,以及下单支付时的各项优惠刺激,去提升曝光量和转化率。
所以,指标公式化量化,就是把它拆解到最小不可分割的、可量化的数据指标。这一系列拆解背后是对业务关系和流程的理解,如果不理解业务,根本找不到其中指标之间的相关关系。
完成基础拆解后,就是根据目标去找到那些能影响目标的最小可量化的数据指标,加上时间、地区等维度对比分析,找出曾经策略的优劣点,优化策略继续战斗。
三、如何善用数据分析能力?发挥数据分析能力之前,首先要熟悉自己使用的数据查询分析系统,也就是BI(商业智能)系统。
如果你还没有使用过BI系统,我这里以友盟+BI为例,简单熟悉一下系统背后的功能指向。
我拿到U-App AI版基础架构,有9个大部分和一个概况汇总。具体如下图所示,BI系统的每一个功能模块都有其作用,接下来我简单阐述一下自己对这个系统的理解。
概况里的指标是设计人员认为对产品有利的关键性指标,所以放在一起集中展示,其中的每一个指标都是取自下面的9大指标体系,只是起到了一个汇总呈现,集中对比展示的作用。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP