手机版 欢迎访问人人都是自媒体网站
编辑导读:想要入门数据分析,可以先从掌握KSA模型开始。什么是KSA模型?KSA模型是HR领域的概念,是knowledge、skill、ability的缩写。具体要如何理解呢?本文作者对此展开了分析,与你分享。
很多同学都会想着:我要好好学习数据分析,今年做好工作/找个好工作。怎么学才能学好?这里推荐用KSA方法,理清目标,分解任务哦。啥?你说之前没听过?今天我们系统讲解下。
一、什么是KSAKSA是HR领域的概念,原本说的是评价人能力的三个维度。
知识Knowledge:完成任务必须掌握的理论知识。
技能Skills:完成任务必须的工具操作技能。
能力Abilities:完成任务所必须的思维、沟通、协调等能力。
举个简单的例子,陈老师家里4岁的小朋友coco在学算数:
爸爸问:1+1等于几?coco答:2!这是知识。
去买菜,coco拿了1个萝卜,爸爸说:我们要2个,coco又拿了1个,这是技能。
走亲访友,当着大家的面,爸爸问:coco,1+1等于几。coco忽闪着大眼睛,大声说:2!引来大家赞许的目光,这是能力!
简单来说:
知识是能背诵的,有客观评价标准的。如果是自然科学知识,很有可能有唯一的正确答案,社会科学知识不见得有唯一答案,但是在一定范围内有约定俗成的理解和解释。
技能是需要操作、练习、反复训练才能能掌握的。技能以知识作为依托,需要借助工具实现。不同的工具需要的技能不同,越强大而工具实现的效果越好。比如coco小朋友,已经学会各种加减乘除问题扭头就问siri,coco并表示体验良好。
╮(╯▽╰)╭
能力则需要见识和悟性!有意思的是,在面对实际问题的时候,理解能力、沟通能力、共情能力、协调能力、往往比知识和技能都更能直接产生作用!比如在亲戚面上问小朋友问题,根本的目的是炫耀,是涨涨脸,这时候能积极配合的小朋友才是好小朋友!不然平时学再多,再能干,使不上劲,还是很尴尬呀。
这一套理论原本是HR评估用人资格的方法。但是一经掌握,就发现它在工作中非常好用!因为在工作中,能区分清楚解决问题到底需要KSA中哪一个,能极大提高工作效率,促成工作质量。
二、什么是工作中的KSA举个简单的例子,当你开始运用KSA拆解工作的时候,你会秒懂很多问题,比如:
为什么大家总吐槽大学里文科没啥用,理科才好用?因为本质上是KSA在教育和工作中差异所致(如下图):
为什么很多大公司里,职业经理人们看起来屁都不会,屁事不办,但是混的顺风顺水?本质上是因为在促成目标上,KSA有不同的运用方式(如下图):
所以理解KSA的原理,掌握拆解KSA的方法,对混职场很有意义,特别是对数据分析工作!
三、为什么KSA对数据分析求职很重要如果套到数据分析身上,KSA的体现就是:
知识Knowledge:《数学》《统计学》《管理科学》《运筹学》《机器学习》
技能Skills:excel、ppt、sql、python、tableau、hadoop、spark……
能力Abilities:需求沟通、用户洞察、逻辑推理、实验设计、总结汇报……
有趣的是,如果仔细研究就会发现,在各类工作中,数据分析是唯一一个KSA的知识库都爆满的工种。一般来说:业务类工作,比如销售、产品、运营、营销都更偏A,KS相对较少;研发类工作更偏KS,A较少。而数据分析,恰好夹在业务和技术之间,两边都有涉及。因此只要你想学,KSA里都有成吨的书可以学(如下图)。
于是便导致了一个搞笑的事:入行的同学总是急着看书,买了几十本狂学一通,结果毫无重点,记也记不住,一面试稀里哗啦。回来以后还不去总结:别人到底要的是我的什么能力。还在继续上网问:“到底数据分析要看啥书”然后买更多书回来了!结果越学越迷茫。
要知道:数据分析与数据分析之间的差距,比数据与运营、产品、研发的差距之间大多了。不去认真研究求职目标企业的要求,不去区分自己在面试哪个环节,挂在哪一类问题上,闭着眼睛海学,肯定越学越迷茫。如果能做好充分功课,至少能知道自己输在哪些问题上,这样就更好对症下药(如下图)。
真当开始数据分析工作以后,就会发现:在懂数据和不懂数据的人眼里,数据分析的角色完全不同。
懂数据的人看起来,数据分析S的成分最大,数据采集、数据清洗、数仓设计都是脏活累活,得认真耕耘才有一个靠谱的数据可用。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP