手机版 欢迎访问人人都是自媒体网站
编辑导语:如今,外卖已经成为了很多人生活中最为重要的一部分,越来越多的人表示根本离不开外卖。早在2017年,程维就表示滴滴下一步发展最重要的战略就是国际化!目前,滴滴已经在墨西哥上线了外卖业务,这也是滴滴外卖进入的首个海外城市。在墨西哥外卖的背后,站着的是中国产品技术团队。
两个月前,墨西哥最受欢迎的杂志之一——《电视小说》杂志(TV Novelas)进行了一项有趣测试,他们分别统计了当地5家外卖品牌的客单价与配送时间,并将对比结果刊登在杂志上(如下图)。
结果令人意外,拿到冠军的既不是土生土长的Rappi,也非业务遍布全球的Uber Eats,而是在墨西哥落地还不足两年的DiDi Food(下称“滴滴外卖”)。
经测试,滴滴外卖最快也最便宜
在国内,多数人对滴滴外卖的印象可能还停留在三年前在国内与美团之前的竞争。随后,滴滴外卖在2018年底进行战略调整,转战海外,并在之后两年相继挺进墨西哥、巴西、日本等国。据说今年下半年,滴滴外卖在拉美市场的增速相当可观。
如果说整个故事里有什么没变的,站在滴滴外卖背后的R Lab算是其中之一。这个成立于2017年下旬的一级部门,专门负责为滴滴探索边界、孵化新业务,他们的首个成果便是滴滴外卖。
R Lab的强项是产品与研发,目前该团队规模超过500人,其中3/5的岗位来自产品与技术,总负责人为滴滴首任产品经理罗文,后者曾主导滴滴多次版本迭代,深度参与红包营销、专车起步等标志性事件。
可以说,滴滴外卖在墨西哥当地杂志评选中脱颖而出,与R Lab为其提供的产品/技术能力密不可分。
由于用户支付价格受餐费、配送费、补贴等因素影响,且各家里程费配置也不尽相同,因此本文将关注点放在滴滴为何更快而不是更便宜上。
何为快?除了对比其他平台带来的直观感受之外,加速购买决策的“省时”、满足用户预期的“准时”也都与“快”息息相关。因此本文我们将围绕“省时”与“准时”两方面,从R Lab在用户侧(C端)与骑手侧(D端)的产品设计处着手,做一些简单剖析。
一、用户侧:提升决策效率,降低等待焦虑外观上,滴滴外卖与国内外卖应用最大的区别当属界面信息量,前者简洁但一目了然,后者丰富却稍显复杂。
造成这种区别的根本原因其实是国内外文字呈现特点的不同。以西班牙语为例,同样释义,西班牙较中文需占据更多屏幕空间。因此在保障同样信息密度的前提下,界面会显得十分拥挤,拖延用户的决策时间,带来不便体验。
针对这个问题,R Lab对滴滴外卖的首页做了全新改版,以达到让用户可以更高效地选择商品的诉求。
首先,店铺布局全部呈现“单排”(如下),着重扩大了店铺卡片区域,方便承载更多信息,比如活动标签、分类、推荐理由等;其次,调整首页框架,让搜索、筛选始终置顶,用户可以随时在浏览店铺的同时发起搜索和筛选;除此之外,R Lab的产品团队还新增更丰富的运营位,以满足不同场景下的专题活动需求。
该版本发布后,下单用户的平均访问店铺数从4.05次减少到了3.76次,显著提升了购买决策效率。
缓解了用户在下单前的焦虑,还要考虑用户等候订单时的焦虑。
通常来说,实际配送中出现的早到、迟到现象很难避免。因此产品经理需要对类似场景给出预案,这些预案通常要满足两点要求:1,用户应该及时了解到最新的送餐时间;2,在满足第一点的同时,不过度打扰用户。
于是,R Lab的技术团队针对性地提升了“预测送达时间”能力。在预计迟到、早到较多时告知用户更新后的送达时间。
当然,若仅仅是几分钟的早到或迟到便不会更新以避免干扰(目前精确度为分钟级)。不过在事实迟到后,应用还是会告知用户“迟到超过20分钟的订单系统将提供优惠补偿”这点,对其安抚(如下图)。
该能力上线后,能观测到用户减少了与骑手的联系,判断为焦虑减少,体验提升。
二、骑手侧:订单二次调度+服务质量预判为主动预防送餐超时,滴滴外卖在分单引擎优化上做了两步关键动作:
一步是上线“超时风险模型”,在不影响骑手收益的前提下,控制已超时、或即将超时的骑手接到新订单的比例。
Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP