手机版 欢迎访问人人都是自媒体网站

当前位置:主页 > 运营 >

从一个BI项目的失败,看到数据治理的重要性

时间:2020-11-21 09:19|来源:网络整理|编辑:采集侠|点击:

编辑导语:BI项目主要分为3个部分:梳理需求、技术设计、实际开发,每个部分都有一个项目里程碑;所以项目组和业务人员之间的关系非常重要,BI项目经理要协调各方关系,才能顺利进行;本文作者分享了从一个BI项目的失败看数据治理的重要性,我们一起来看一下。

 从一个BI项目的失败,看到数据治理的重要性

很多企业在做BI项目时,一开始的目标都是想通过梳理管理逻辑,帮助企业搭建可视化管理模型与深化管理的精细度,及时发现企业经营管理中的问题。

但在项目实施和验收时,BI却变成了报表开发项目,而报表的需求往往和个人习惯有关;一旦人员发生变动,尤其是新入职的高层,会把前公司的内容搬过来,这就需要重新开发一大堆报表。

如果不从源头进行控制,被动服务模式下的IT不可能满足所有人的报表需求。

接下来我们要讲的这个案例就真实反应了这个过程,同时也为大家解析问题产生的原因并找到解决问题的方法,建议所有有计划或已经实施BI项目的企业,认真阅读本文。

 从一个BI项目的失败,看到数据治理的重要性

01

2011年底至2012年初,笔者在某女装公司组织实施BI系统,项目第一期就花了100多万,长达6个月的周期,经历了业务需求调研、数据清理、指标体系梳理、数据模型构建等等一系列中规中矩的项目实施过程。

从业务个性化需求报表到以经营指标为导向的数据模型、数据驾驶舱等等,在项目组看来,除移动化展现,几乎覆盖了当前所有业务需求;在多次宣导并召开上线动员大会后,BI终于正式运行了。

然而现实却给了项目组一个响亮的耳光,在BI系统上线后,3个月内不仅使用次数屈指可数,就连最初要求的月度经营分析和绩效考核必须从BI中取值这两点都没有实现,依然需要业务部门从各个系统中导出数据再自行计算统计。

 从一个BI项目的失败,看到数据治理的重要性

第一期项目很快就被宣判失败,这让整个项目组深受打击,实施方法论是没有问题的;也针对上述状态的可能性做了很多短期过渡的报表,还有最大自由定义的万能报表,但最后用户们依然不满意。

这究竟是什么原因呢?

02

项目组进行反思,并用一周时间去做了用户调研,进行深入地讨论总结。

1)大部分用户反馈BI系统操作缺乏便利性,使用起来特别麻烦;因为每个用户只需查看自己日常工作的数据即可,这第一期BI系统实施把所有业务特性进行了归纳,按照其基础职能设置指标组合与自主选择的时间跨度栏位。

用户因此产生一个印象就是需要的报表全部堆砌在一起,你需求什么自己去找,而且部分派生指标取值需要重新计算后产生,报表展现的效率低下,BI操作起来就很痛苦。

其实每一项体系既要有决策层的视角,也要有管理层的视角,虽然按照操作层的指标体系与时间自定义几乎涵盖一切,但这样并没有针对每一个岗位进行相应的配置;要想得到用户认可,首要要素需要满足各层级用户在某一时间周期内的数据所见即所得

2)指标体系的管理逻辑梳理不清晰,需要用户凭经验去寻找数据背后的逻辑;BI的价值是提升管理的精准度,通过数据构筑一个企业管理模型。

BI系统实施的最大能力就体现在如何梳理管理逻辑,帮助企业可视化展现管理模型与管理的精细度。

3)主数据定义的一致性问题,用户经常反馈业务系统与BI数据报表中相同维度的数据会出现的一些差异,导致大家对BI数据的信任度严重下降。

综合上述调研的问题,项目组征得公司信息决策委员会的同意,于2012年8月启动了第二期的BI系统实施;项目组经过商讨决定改变实施思路,先暂停技术性工作,首要任务是进行公司的数据治理。

03

那么数据治理要怎么开展呢?

 从一个BI项目的失败,看到数据治理的重要性

第一个就是主数据的治理,也就是说企业经营管理过程会用到哪些主数据?这些主数据是如何产生、如何进行分发、会标记哪些维度形成派生主数据?

随后在BI中单独搭建一个主数据中心库,抽取业务系统的主数据按照分类原则存放,并开发主数据一致性校验程序与主数据分发日志表。

第二个是指标的梳理,建立指标体系,定义每个分析过程中的使用的业务指标,建立评价标准,以及计算方法;将业务管理逻辑进行更加直观的呈现,销售环节出现了数据波动就可以直观的呈现出来,通过指标的呈现,可以追踪哪部分业务发生的问题。

Copyright © 2018 DEDE97. 织梦97 版权所有 京ICP